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Abstract Accurate prediction of the Asian-Australian
monsoon (A-AM) seasonal variation is one of the most

important and challenging tasks in climate prediction. In

order to understand the causes of the low accuracy in the
current prediction of the A-AM precipitation, this study

strives to determine to what extent the ten state-of-the-art

coupled atmosphere-ocean-land climate models and their
multi-model ensemble (MME) can capture the two

observed major modes of A-AM rainfall variability–which

account for 43% of the total interannual variances during
the retrospective prediction period of 1981–2001. The first

mode is associated with the turnabout of warming to

cooling in the El Niño-Southern Oscillation (ENSO),
whereas the second mode leads the warming/cooling by

about 1 year, signaling precursory conditions for ENSO.

The first mode has a strong biennial tendency and reflects

the Tropical Biennial Oscillation (Meehl in J Clim 6:31–
41, 1993). We show that the MME 1-month lead prediction

of the seasonal precipitation anomalies captures the first

two leading modes of variability with high fidelity in terms
of seasonally evolving spatial patterns and year-to-year

temporal variations, as well as their relationships with

ENSO. The MME shows a potential to capture the pre-
cursors of ENSO in the second mode about five seasons

prior to the maturation of a strong El Niño. However, the

MME underestimates the total variances of the two modes
and the biennial tendency of the first mode. The models

have difficulties in capturing precipitation over the mari-

time continent and the Walker-type teleconnection in the
decaying phase of ENSO, which may contribute in part to a

monsoon ‘‘spring prediction barrier’’ (SPB). The NCEP/

CFS model hindcast results show that, as the lead time
increases, the fractional variance of the first mode increa-

ses, suggesting that the long-lead predictability of A-AM

rainfall comes primarily from ENSO predictability. In the
CFS model, the correlation skill for the first principal

component remains about 0.9 up to 6 months before it
drops rapidly, but for the spatial pattern it exhibits a drop

across the boreal spring. This study uncovered two sur-

prising findings. First, the coupled models’ MME
predictions capture the first two leading modes of precip-

itation variability better than those captured by the ERA-40

and NCEP-2 reanalysis datasets, suggesting that treating
the atmosphere as a slave may be inherently unable to

simulate summer monsoon rainfall variations in the heavily

precipitating regions (Wang et al. in J Clim 17:803–818,
2004). It is recommended that future reanalysis should be
carried out with coupled atmosphere and ocean models.
Second, While the MME in general better than any indi-
vidual models, the CFS ensemble hindcast outperforms the

MME in terms of the biennial tendency and the amplitude
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of the anomalies, suggesting that the improved skill of

MME prediction is at the expense of overestimating the

fractional variance of the leading mode. Other outstanding
issues are also discussed.

Keywords Asian-Australian monsoon !
Coupled atmosphere-ocean-land climate model !
Dominant mode of rainfall variability !
MME one-month lead prediction ! NCEP CFS !
Biennial tendency ! ENSO predictability

1 Introduction

While the detailed evolution of weather events may not be
predictable beyond the span of a few days to 2 weeks due

to the chaotic internal dynamics of the atmospheric motion

(Lorenz 1965), the time or space averages of the atmo-
spheric variables, or the statistical behavior of weather,

may be predictable over timescales of a season or longer

due to the interactions between the atmosphere and the
more slowly varying oceans and land surface properties.

The climate predictability, therefore, critically depends on

the nature of the slow coupled physical processes. In the
tropical Pacific, the sea surface temperature, surface winds,

and precipitation are tightly coupled (Bjerknes 1969); and

to a large extent, the climate variations in the region are
determined by slow oceanic dynamical processes (Cane

et al. 1986; Zebiak and Cane 1987). For this reason, El

Niño-Southern Oscillation (ENSO) and its global impacts
is perhaps the most predictable phenomenon in the Earth’s

climate system.

In contrast with the tropical Pacific climate, dynamical
model simulation, and seasonal prediction of the Asian

monsoon interannual variability in rainfall have been a

major challenge (Sperber and Palmer 1996; Goswami
1998; Gadgil and Sajani 1998). Sperber and Palmer (1996)

evaluated performances of 32 atmospheric general circu-

lation models (AGCMs) that participated in the
Atmospheric Model Intercomparison Project (AMIP).

These models show little or no accuracy in predicting the

all-Indian rainfall from 1979 to 1988 except during the
1987 El Niño and the 1988 La Niña. Wang et al. (2004)

assessed performances of the ensemble simulations of

Asian-Australian Monsoon (A-AM) anomalies in 11 AG-
CMs during the unprecedented El Niño period from

September 1996 to August 1998. The 11-model ensemble

simulation of anomalous Asian summer rainfall patterns in
the A-AM region (30"S–30"N, 40"E–160"E) shows a map

correlation coefficient of about 0.45, which is considerably

lower than its counterpart in the El Niño region (in which
the map correlation coefficient is about 0.8). Examination

of potential predictability of five AGCMs’ multi-model

ensemble (MME) hindcast for a 21-year period confirmed

that when the models are forced by observed sea surface
temperature (SST), they are unable to effectively predict

Asian-Pacific summer monsoon rainfall (Wang et al. 2005).

The difficulty in simulating and predicting the Asian
summer monsoon’s seasonal rainfall is in part due to

limitations in predicting the monsoon’s intrinsic internal

dynamics. Using the Geophysical Fluid Dynamics Labo-
ratory AGCM, Goswami (1998) hypothesized that the

contribution of ENSO to the interannual variability in
Indian monsoon region is comparable to the regional scale

fluctuations that arise from an internal oscillation unrelated

to SST anomalies. Thus, the models’ low prediction ability
in the Asian summer monsoon region may be due to cha-

otic dynamics associated with synoptic to intraseasonal

fluctuations and/or an unpredictable part of the interaction
with the land-surface or ocean process. But, there are other

potential sources that might be prohibiting practical mon-

soon predictability. The role of other low-frequency (LF)
boundary forcing, such as Eurasian and Himalayan snow

cover, is still unclear.

One of the factors that limit the predictability is related to
the strategies of the AGCM-alone simulation and so-called

‘‘two-tier’’ prediction. Sperber and Palmer (1996) noted that

the correct mean state were more likely to correctly capture
the interannual variability of tropical precipitation. In

addition, Turner et al. (2005) showed that improved accu-

racy in prediction of atmospheric teleconnection patterns
associated with ENSO requires the accurate prediction of

the climatological mean state. But, the coupled atmo-

sphere–ocean models often have deficiencies in
reproducing good climatology. In order to better predict

climate anomalies associated with ENSO teleconnection

patterns, Bengtsson et al. (1993) proposed a two-tier
approach, in which SST was first predicted by using cou-

pled models, and then the atmospheric anomalies were

predicted by using atmospheric models forced by the pre-
dicted SST. Recent research using coupled ocean–

atmosphere models suggests that the prediction of summer

monsoon precipitation requires investigators to take into
account the local monsoon–warm pool ocean interactions

(Wang et al. 2003, 2004; Wu and Kirtman 2005; Kumar

et al. 2005). It has been shown that the poor performance of
atmospheric models forced by observed SST in simulating

the Asian summer monsoon’s variability is partially

attributed to the experimental design, in which the atmo-
sphere is forced to respond passively to the specified SSTs,

while in nature, the SSTs result in part from the atmospheric

forcing (Wang et al. 2004). In the absence of the monsoon–
ocean interaction, all models yield positive SST-rainfall

correlations that are at odds with observations in the heavily

precipitating summer monsoon region (Wang et al. 2005).
Therefore, to assess the monsoon’s predictability, it is
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desirable to use coupled atmosphere–ocean models or a

one-tier prediction system.
The accuracy of seasonal prediction can be constrained

by errors in observation and errors in determining the ini-

tial states of the atmosphere and ocean, and can also be
limited by the uncertainties in a model’s physical para-

meterization of the effects of unresolved processes on

unresolved scales. An ensemble prediction starting from
different initial conditions provides a way of distinguishing

the ensemble mean, which is believed to be related to
climate signal, and determining the deviation from the

ensemble mean, which is regarded as a measure of the

noise and uncertainty due to internal chaotic dynamics
(Shukla 1981; Rowell et al. 1995; Shukla et al. 2000). To

further reduce the errors associated with the uncertainties

in one model’s physical parameterizations, multiple models
were used in this study, drawing upon the assumption that

anomaly errors in various model solutions are spread ran-

domly. Although systematic errors in climatological mean
states such as cold tongue bias, excessive trade winds, and

double ITCZ, are similar in many models, our recent

analysis found that the anomaly errors are of quite diverse
among models. To obtain a consensus view about the

current status of CGCMs, a simple composite method was

used to compute a MME. The MME is an effective way to
aggregate and synthesize multi-model forecasts. It has been

recognized that in MME the ensemble average reduces the

noise present in the individual forecasts, increasing the
correlations, and reducing the systematic error (Krish-

namurti et al. 1999; Doblas-Reyes et al. 2000; Palmer et al.

2000). In the following assessment of the summer monsoon
predictability, we will analyze the MME results in order to

establish a better estimate of the practical predictability.

Determining the predictability of the summer monsoon
and identifying the sources of predictability are of central

importance in seasonal prediction and in forecasting the

potential uncertainties associated with the prediction. How
to determine climate predictability in a coupled model

hindcast remain elusive. We propose that the distinguished

major modes of the A-AM interannual variations may
represent or provide a measure for the predictable part of

the variability. Furthermore, the models’ performances in

capturing these major modes may be related to their sea-
sonal prediction skills. Therefore, it is important to (1)

determine what the major modes of A-AM interannual

variability are, (2) assess how well the state-of-the-art
coupled climate models capture the leading modes of the

A-AM interannual variability, and (3) determine how the

models’ performances in capturing these leading modes are
related to the seasonal prediction skills. These are the

major purposes of the present study.

Our analysis will primarily focus on precipitation,
because precipitation is the most important variable for

seasonal prediction and because it is also the most difficult

variable for seasonal prediction. Examination of precipita-
tion prediction is the most rigorous test for climate models.

Retrospective forecasts use updated initial conditions. The

influence of initial conditions is expected to make CGCM
more realistically predict the A-AM anomalies compared to

the previous simulations in the coupled long integrations.

2 The models, data, and analysis procedure

2.1 The models and data

The models that are examined in this study are ten fully

coupled atmosphere–ocean–land seasonal prediction sys-

tems that come from the following two international
projects: ‘‘Development of a European Multi-model

Ensemble system for seasonal to inTERannual prediction’’
(DEMETER) (Palmer et al. 2004) and the Asia-Pacific
Economic Cooperation Climate Center/Climate Prediction

and Its Application to Society (APCC/CliPAS) (Wang

et al. 2007b). Table 1 presents a brief summary of each
model. For more details of the models, the readers are

referred to the relevant literatures cited in the Table 1.

These models include seven models from DEMETER,
which come from European Centre for Research and

Advanced Training in Scientific Computation (CERFACS),

European Centre for Medium-Range Weather Forecasts
(ECMWF), Instituto Nazionale de Geofisica e Vulcano-

logia (INGV), Laboratoire d’Océanographie Dynamique et

de Climatologie (LODYC), Centre National de Recherches
Meteorologiques (Meteor-France), the UK Met Office, and

Max Planck Institute for Meteorologie (MPI). Also inclu-

ded are three coupled models from APCC/CliPAS: the
Frontier Research Center for Global Change (FRCGC), the

National Center for Environmental Prediction (NCEP), and

the Seoul National University (SNU).
All selected models have retrospective forecast (hind-

cast) for the common 21-year period of 1981–2001 with 6-

to 9-month integrations for 6–15 members starting from
different initial conditions for four seasons. The hindcasts

are initialized in February 1, May 1, August 1, and

November 1 except the CFS model, in which the 15
atmospheric initial conditions were taken on the 9, 10, 11,

12, 13, 19, 20, 21, 22, and 23 of the month prior to the

target month, and on the second-to-last day of the previous
month, as well as the first-to-third days of the targeting

month (Saha et al. 2006).

In the present study, we focus on evaluating 1-month
lead seasonal forecast. Suppose the forecast was initialized
on February 1, the 1-month lead seasonal prediction means

the average of predicted March, April, and May means.
The CFS hindcast was issued every month with an
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integration time of 9 months. Thus, the CFS data make it

possible to assess the predictability as a function of forecast
lead time and the impact of initial conditions. In this

hindcast that is initiated from each month, the first monthly

mean of the forecast is defined as the 0-month lead because
three ensemble members were initialized in the first 3 days

of the target month. Similarly, the second monthly mean is

defined as the 1-month lead. The remaining lead times are
defined analogously.

2.2 Data

The Climate Prediction Center Merged Analysis of Pre-

cipitation (CMAP) data set (Xie and Arkin 1997) and the

Global Precipitation Climatology Project (GPCP) data
(Adler et al. 2003) were used as verification datasets. For

comparison, two reanalysis datasets—the NCEP/DOE

AMIP II Reanalysis (‘‘NCEP-2’’) data (Kanamitsu et al.
2002), which is essentially the NCEP/NCAR reanalysis

with bugs fixed, and the ECMWF 40-year Reanalysis

(‘‘ERA-40’’) data (Uppala et al. 2005)—were also used to
assess their leading modes of precipitation over the A-AM

monsoon region. The observational 850 hPa wind fields are

obtained from NCEP-2, and the observational SST data are
obtained from the improved Extended Reconstructed SST

Version 2 (ERSST V2) data (Smith and Reynolds 2004).

2.3 Analysis procedure

The year-to-year variation in the vast A-AM region
exhibits enormous regional differences and depends

strongly on the phase of the annual cycle (Meehl 1987).

Based on this physical consideration, Wang and An (2005)
have put forth a Season-reliant Empirical Orthogonal

Function (S-EOF) analysis method to distinguish modes of

variability that evolve with the seasons. Their S-EOF
analysis of the Indo-Pacific SST anomalies yielded two

statistically significant leading modes that are not obtain-

able by using conventional EOF analysis. The two leading
modes represent LF and Quasi-Biennial (QB) modes,

which are distinguished from each other in their seasonal

evolution, spatial structure of the fractional variance, and
interdecadal variation and trend. The differences between

the S-EOF and the extended (Weare and Nasstrom 1982)

and cyclostationary EOF (Kim 2002) analyses were dis-
cussed in Wang and An (2005). The advantages of the

S-EOF compared to the conventional EOF analysis and

why the S-EOF was used to derive the major modes were
discussed in detail in Wang et al. (2007a).

The purpose of the S-EOF is to depict seasonally

evolving anomalies throughout a full calendar year. Here,
we adopted the concept of the ‘‘monsoon year’’ (Yasunari

1991), which spans from the summer (June, July, and

August) of Year 0, or ‘‘JJA(0),’’ to the spring (March,

Table 1 Description of ten coupled models used in this study

Institute Model name AGCM OGCM Ensemble
member

Reference

CERFACE CERFACE ARPEGE OPA 8.2 9 Deque (2001)

T63 L31 2.0" lat 9 2.0" lon L31 Delecluse and Madec (1999)

ECMWF ECMWF IFS HOPE-E 9 Gregory et al. (2000)

T95 L40 1.4" lat 9 0.3–1.4" lon L29 Wolff et al. (1997)

INGV INGV ECHAM4 OPA 8.2 9 Roeckner et al. (1996)

T42 L19 2.0" lat 9 2.0" lon L31 Madec et al. (1998)

LODYC LODYC IFS OPA 8.0 9 Gregory et al. (2000)

T95 L40 182GP 9 152GP L31 Delecluse and Madec (1999)

Meteo-France Meteo-France ARPEGE OPA 8.0 9 Deque (2001)

T63 L31 182GP 9 152GP L31 Madec et al. (1997)

MPI MPI ECHAM5 MPI-OM1 9 Roeckner et al. (1996)

T42 L19 2.5" lat 9 0.5–2.5" lon L23 Marsland et al. (2002)

UKMO UKMO HadAM3 GloSea OGCM 9 Pope et al. (2000)

2.5 9 3.75L19 1.25" lat 9 0.3–1.25" lon L40 Gordon et al. (2000)

FRCGC SINTEX-F ECHAM4 OPA 8.2 9 Luo et al. (2005)

T106 L19 2" cos(lat) 9 2" (lon) L31
NCEP CFS GFS MOM3 15 Saha et al. (2006)

T62 L64 1/3" lat 9 5/8" lon L27

SNU SNU SNU MOM2.2 6 Kug and Kang (2007)

T42 L21 1/3" lat 9 1" lon L40
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April, and May) of the following year (Year 1), or

‘‘MAM(1)’’. For this purpose, a covariance matrix was
constructed using four consecutive seasonal mean anoma-

lies for each year; in other words, the anomalies for JJA(0),

SON(0), DJF(0/1), and MAM(1) were treated as a ‘‘yearly
block’’ that is labeled Year 0—the year in which the

sequence of anomalies commences. After the EOF
decomposition is finished, the yearly block is then divided

into four consecutive seasonal anomalies, to obtain a sea-

sonally evolving pattern of the monsoon anomalies in each
monsoon year for each eigenvector.

We have applied the S-EOF analysis to both observed

and predicted seasonal mean precipitation anomalies, which
are the departures from the mean annual cycle derived from

the period of 1981–2001. In the present study, we consider

the A-AM region as extending from 40"E to 160"E, and
from 30"S to 40"N, which covers South Asia and Australia

as well as nearly the entire Indo-Pacific warm pool region.

3 Observed leading modes of the Asian-Australian
monsoon system

The S-EOF analysis of CMAP precipitation seasonal

anomalies (1981–2002) yields two statistically distin-
guished leading modes, which account for 30.1 and 13.1%

of the total variance in precipitation anomalies, respec-

tively. Figure 1 shows the time series of the principal

component (PC) of the first and second S-EOF mode. The

PCs of the two leading modes are closely related to ENSO
as measured by the NINO 3.4 SST anomalies. To examine

their relationship with ENSO, the lead-lag correlation

coefficients between the two PCs and the seasonal NINO
3.4 SST anomalies are presented in Fig. 2. Note that the

A-AM precipitation seasonal anomaly from JJA(0) to the
next MAM(1) is centered on November and December of

Year 0, thus, the PCs have a yearly resolution centered on

November–December of each year. The observed first
mode shows a maximum positive correlation coefficient

that exceeds 0.9 with NINO 3.4 SST anomaly in DJF(0/1).

Since El Niño events normally mature toward the end of
the calendar years (Rasmussen and Carpenter 1982), the

result in Fig. 2a indicates that the first S-EOF mode con-

curs with El Niño turnaround. On the other hand, the
observed second mode shows a maximum correlation

coefficient (about 0.75) leading El Niño by about 1 year,

suggesting it may provide a precursory signal for ENSO
onset (Fig. 2b).

Figure 3a shows the seasonal evolutions of the spatial

patterns of CMAP precipitation anomalies which were
linearly regressed against the corresponding first PC in an

enlarged domain including the tropical Indo-Pacific Ocean.

Also shown are linearly regressed patterns of the NCEP-2
850 hPa wind anomalies (vectors) against the first PC. We

display the regressed anomalies with statistically signifi-

cant level more than 90% for both precipitation and wind.

Time series of S-EOFs/ Precipitation
(a)

(b)

Fig. 1 Principal components of
a the first and b the second
S-EOF modes of seasonal
precipitation anomaly obtained
from CMAP observation (solid),
MME (dashed), and each model
prediction (dotted),
respectively. The numbers withn
the parenthesis in the figure
legend, such as MME (0.95) in
the top panel and MME (0.89)
in the bottom panel indicate the
temporal correlation coefficients
between the observed and MME
principal components
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In JJA(0), large-scale suppressed convections are located
over the maritime continent and the equatorial eastern

Indian Ocean. The dry anomalies extend northwestward to

the southern Indian subcontinent and the Arabian Sea.
Enhanced rainfall is found over the equatorial western

Pacific. The wet anomalies also extend northwestward to
the Philippine Sea, the northern South China Sea, and the

head of the Bay of Bengal. On the other hand, the pre-

cipitation along the East Asian monsoon front (Maiyu or
Baiu) weakens. Associated with the anomalous convection

patterns, an anomalous anticyclone ridge extends from the

maritime continent to the southern tip of India, with
enhanced monsoon westerlies extending from India to the

western Pacific.

During SON(0), the dry anomalies over the maritime
continent intensify and expand northward and eastward,

covering the Philippine archipelago and the entire tropical

South Asia and northern Australia; meanwhile, the western
Indian Ocean becomes wetter than normal. The corre-

sponding southern Indian Ocean (SIO) anticyclonic

anomalies and the zonal wind divergence around the
maritime continent are both well established. This pattern

has been recognized as associated with the Indian Ocean

zonal (or dipole) SST mode (Saji et al. 1999; Webster et al.
1999). From the SON season to the DJF season, the entire

anomalies move slowly eastward with the most suppressed

convection shifting to the Philippine Sea. A new anticy-
clonic anomaly forms over the Philippine Sea. The East

Asian winter monsoon weakens, but precipitation in
southern China increases.

From DJF to the next MAM, the dry anomalies decay

rapidly and move further eastward with a dry center
occurring in the equatorial western Pacific. The SIO and

Western North Pacific (WNP) anticyclones remain, but

they weaken. The evolution of precipitation anomalies
reflects their association with ENSO turnaround. Wang

et al. (2003) pointed out that the remote El Nino forcing,

monsoon–warm pool interaction, and the regulation of the
monsoon annual cycle are three fundamental factors that

give rise to the leading mode.

Figure 3b shows spatial patterns of the second S-EOF
mode, which has not been documented previously. In

SON(0), the fall prior to the El Niño development year, the

WNP precipitation and the cyclonic circulation anomaly
pattern shift equatorward from their positions during the

previous summer, and the convective dipole in the

(a)

(b)

Fig. 2 a Lead-lag correlation
coefficients of NINO3.4 SST
index with reference to the first
S-EOF principle component. b
The same as in (a) except with
reference to the second S-EOF
principal component

610 B. Wang et al.: Leading modes of Asian-Australian monsoon interannual variability

123



equatorial Indian Ocean intensifies. In the ensuing DJF and

MAM, the WNP anomalous cyclone and associated equa-

torial westerly anomalies further strengthen, dominating
the entire western Pacific region. At the same time, dry

anomalies develop in the northern Indian Ocean and

Southeast Asia in DJF(0/1) and over the eastern Indonesia
and northern Australia in MAM(1). The anomalous pattern

in MAM (1), such as the weakened trades over the western-

central Pacific, is a robust precursor for El Niño develop-
ment; it then evolves into a mature El Niño event in the

central-eastern Pacific two or three seasons later.

Thus, an interesting precursory feature in the year prior
to an ENSO event is that a large-scale cyclonic anomaly

forms over the WNP in the summer to fall seasons prior to

a year in which El Niño develops, followed by a continuous
southeastward movement and strengthening through the

following fall, winter, and next spring. This feature agrees

well with the results of Wang (1995) who pointed out that

this pattern has occurred since the late 1970s. This feature

(change in ENSO-monsoon relationship) concurs with the
late seventies climate shift in the North Pacific and changes

in ENSO properties.

4 The major modes of A-AM variability
in the MME prediction

In this section, we first evaluate the skill of the 1-month

lead prediction of seasonal precipitation anomalies made
by the ten one-tier models against two observed leading

modes, then compare them with those derived from the two

reanalysis datasets in order to fully appreciate the models’
skill. The last part of this section discusses major defi-

ciencies with the MME.

(a) (b)Fig. 3 Spatial patterns of the
linear regression fields of
seasonal CMAP precipitation
anomalies (color shading, units
of mm day-1) and NCEP-2
850 hPa wind anomalies
(vectors, unit of ms-1) against
the corresponding first principal
component from JJA(0) to
MAM (1). b Same as in (a)
except for the second S-EOF
mode. The regressed anomalies
with more than 90% significant
level are displayed for both
precipitation and winds
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4.1 The principal components and spatial patterns

of the MME

Included in Fig. 1 are the temporal correlation coefficients

between the observed and MME-predicted PC time series

(0.95 for the first S-EOF mode and 0.89 for the second
mode). Thus, the MME system reproduced the temporal

variations of the observed first and second modes very

well. Further, Fig. 2 indicates that the MME forecasts
capture, with high fidelity, the lead-lag correlations

between ENSO and the two leading modes, or the overall

relationship between ENSO and A-AM. For the second
mode, although ERA-40 only shows a positive correlation

at -1 year, the difference between the two reanalysis

results is not statistically significant because the absolute
values of the correlation coefficients are small. Changing

sign of correlation between -1 and +1 year means a quasi-

4 year periodicity. Thus, the result here means that in ERA-
40, the second mode has periodicity longer than 4 years.

The MME’s hindcast also faithfully reproduces the

major spatial distributions of the two observed leading
modes of the interannual variability of A-AM seasonal

precipitation (Fig. 4). This is important because a realistic

temporal evolution doesn’t warrant the corresponding
spatial patterns are realistic. The current evaluation method

relies on the fact that the S-EOF spatial patterns from the

observation and models are quite similar. For the first
S-EOF mode (Fig. 4a), the anomalous patterns from JJA(0)

to DJF(0/1) are very well reproduced, with the anomaly
pattern correlation coefficients being over 0.80. Larger

discrepancies are found during the MAM (1) season over

the western equatorial Pacific and the maritime continent,
suggesting that during the decaying phase of ENSO, the

models have deficiencies in capturing the austral fall

monsoon precipitation over the maritime continent and the
Walker-type teleconnection. This may lead to a drop of

prediction skill across the boreal spring. The poor ability in

capturing the austral fall monsoon precipitation could also
be related to the poor persistence in seasonal evolution, i.e.,

a communication gap between Australian and Asian

monsoon systems in austral fall prior to the onset of the
Asian summer monsoon (Hung et al. 2004).

For the second mode (Fig. 4b), the anomaly patterns

from SON(0) to MAM(1) are reproduced reasonably well

(a) (b)

Fig. 4 a Comparison of the spatial patterns of the first S-EOF
eigenvector of seasonal precipitation anomalies obtained from CMAP
observation, CliPAS and DEMETER MME predictions. b The same

as in (a) except for the second S-EOF mode. The numbers in the right
upper corners indicate pattern correlation coefficients between
observation and the corresponding prediction
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with map correlation coefficients ranging generally from

0.67 to 0.76. However, the JJA(0) pattern was poorly
predicted. This indicates that about 1.5 years prior to the

mature phase of ENSO, the monsoon variability is difficult

to reproduce in the MME. The reason is conceivably due to
the lack of significant SST anomaly forcing or due to the

low predictability of the bereal summer monsoon in the

transitional phase of ENSO. Since from boreal fall to
spring, i.e., SON(0), DJF(0/1), and MAM(1), the anomaly

patterns of the second mode are predicted well, the second
mode of the MME shows a potential to capture the pre-

cursors of ENSO in the A-AM domain about 15 months

prior to the maturation of a strong El Niño.

4.2 Comparison of the MME forecast with reanalysis

In order to appreciate the success of the MME’s hindcast, it

is useful to compare the coupled climate models’ MME
hindcast with the two reanalysis datasets, ERA-40 and

NCEP-2. For this purpose, we used both anomaly pattern

correlation and temporal correlation coefficients to assess
the skills for the spatial pattern (Fig. 5a) and PC (Fig. 5b)

of the first two leading modes. Note that the correlation

coefficients, to a large extent, reflect the root mean square
error very well (figure not shown).

In Fig. 5, the CMAP is used as the baseline for com-

parison. The other observed dataset, GPCP, is extremely
well correlated with CMAP in general (Fig. 5). The dis-

similarity between GPCP and CMAP provides additional

information about the uncertainties in the observation due
to the errors in estimation of tropical precipitation using

different sources of satellite measurements and retrieval

methods.

Of surprise is that the leading modes derived from the

MME predictions are in general better or at least com-
parable to those derived from the two reanalysis datasets.

In terms of the spatial pattern (Fig. 5a), the MME pre-

diction of the first mode is significantly better than the
corresponding one in the NCEP-2 and slightly better than

that in ERA-40; for the second mode, the MME is

considerably better than ERA-40 and slightly better than
NCEP-2. In terms of temporal evolution (Fig. 5b), the

ten-model MME shows considerably higher temporal
correlation coefficients than the two reanalyses for both

leading modes. Note also that the MME outperforms

each individual model’s ensemble. However, one mem-
ber model has poor performance, with a map correlation

coefficient of about 0.3–0.4 for the two leading modes.

Additional calculation shows that even excluding that
poorest model the MME performance remains about the

same.

4.3 The weakness of the MME prediction

While the MME’s prediction captures the spatial pattern

and temporal evolution better than reanalysis, the standard

deviations (amplitudes of spatial variability) in the MME
prediction are significantly lower than those in the reana-

lyses for both modes (not shown), suggesting that the

MME tends to underestimate the total variance. Thus, the
MME improves the pattern and temporal correlation

(compared to each individual model) at the expense of

reducing the amplitude of the anomalies. Therefore, arti-
ficially boosting the temporal amplitudes of the two leading

modes predicted by the MME may lead to reduced root

mean square errors and could improve the forecasts.

(a) (b)

Fig. 5 Comparison of the performances of the MME and individual
predictions, GPCP estimate, and two (NCEP-2 and ERA-40) reanal-
yses against the two observed (CMAP) dominant S-EOF modes of
seasonal mean precipitation anomalies. The abscissa and ordinate
represent, respectively, correlation coefficients between the observed

and predicted (reanalyzed) anomalies for the first and second modes.
The left panel is for the spatial correlation skill of the eigenvector, and
the right panel is for the temporal correlation skill of the principal
component
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Figure 6 shows the percentage variance accounted for

by the first six eigenvalues of the S-EOF analysis of the
A-AM precipitation. Shown also is the unit standard

deviation of the sampling errors associated with each

eigenvalue’s percentage variance. According to the rule of
North et al. (1982), the first two observed leading modes

are well distinguished from each other and from the rest of

the S-EOFs in terms of the sampling error bars. Hence,
they are both statistically distinguishable modes. Of inter-

est is that the first two modes derived from the MME
prediction have similar levels of statistical significance as

the observed counterparts. However, the fractional vari-

ance of the first S-EOF mode derived from the MME
prediction is considerably higher than its observed coun-

terpart. The result indicates that the MME well produces

the first two distinguished leading modes, but it tends to
exaggerate the fractional variance of the first mode while

reducing the variances of the higher modes. The MME is

less noisy, because the higher modes are considered to
reflect unpredictable noises. It is also found that the CFS

1-month lead seasonal hindcast yields a more realistic

fractional variance for the first S-EOF (40% of total

variance) than the MME counterpart (59.2%), suggesting

that the MME tends to smooth out higher modes and thus
overestimate the fractional variance of the leading mode

compared with the individual models.

Figure 7 shows the power spectrum density distributions
and corresponding red noise of the first and second PC time

series. The red noise curve is derived from the first order of

auto regressive (AR1) process with confidence level of
0.05. In the observation, the first mode has a major spectral

peak at 2.5 years and a minor peak around 4–6 years. The
MME captures the LF (4- to 6-year) peak reasonably well,

but essentially fails in reproducing the QB component (left

panels in Fig. 7). In the second mode, the observation and
the MME prediction all show a LF spectral peak around

5 years, but the predicted variances are much smaller than

the observed (right panels in Fig. 7). These results confirm
that the amplitude of MME prediction needs to be cor-

rected. It is also found that the PCs of the CFS 1-month

lead seasonal hindcast are more realistic than the ten-model
MME’s PC spectra (not shown), suggesting that the MME

tends to reduce the biennial tendency of the leading mon-

soon mode.

(a)

(b)

Fig. 6 Percentage variance (%) explained by the first six S-EOF
modes of seasonal precipitation anomalies obtained from a CMAP
and b MME prediction. The bars represent one standard deviation of
the sampling errors

(a) (b)

Fig. 7 The power spectrum density (solid line) and red noise (dashed
line) of a the first (left-hand panels) and b the second (right-hand
panels) S-EOF principal component of seasonal precipitation anom-
aly obtained from CMAP observation (upper panels) and from MME
prediction (lower panels)
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5 Forecast leading modes as function of lead time:
CFS assessment

CFS retrospective hindcast was made with 15 members
that were initialized before the 4th day of each calendar

month. Each ensemble mean covered a 9-month prediction.

Thus, it is possible to evaluate the prediction skill with lead
times from 0 to 8 months. This allows us to examine how

the forecast skills vary with the lead time, which measures

the predictability of the A-AM precipitation anomalies in
terms of the two leading modes.

Figure 8 shows how hindcast correlation skill varies

with lead time in predicting the spatial patterns and tem-
poral evolution (PCs) of the two leading modes of

precipitation variability made by the CFS forecast. For the

first mode, the temporal correlation between the observed

and predicted PC remains about 0.9 until the 6-month lead,
when it drops significantly afterward (Fig. 8a). The

anomaly pattern correlation coefficient between the

observed and predicted spatial patterns decreases from 0.83
at 0-month lead to 0.68 at the 8-month lead. However, the

decrease is not monotonic, rather, it exhibits a minimum at

the 3-month lead (correlation coefficient of 0.51) then
recovers gradually. Why does the skill show a minimum in

the 3-month lead prediction?
Examination of the seasonal evolving anomaly patterns

shown in Fig. 9 indicates that the skills are low for JJA(0)

prediction with a 3- and 5-month lead. The drop of skill in
the 3- and 5-month lead forecasts of the JJA(0) anomalies

means that when the model starts its prediction in January

through March, the skill for predicting the summer pre-
cipitation anomaly is low. Thus, the drop in skill seen in

Fig. 8a suggests a ‘‘Spring Prediction Barrier’’ (Webster

and Yang 1992) in A-AM seasonal forecast. Similarly the
low skill for prediction of SON(0) with a 5-month lead also

means a SPB. Examination of these models’ performances

reveals that the MME has a clear SPB in the prediction of
NINO 3.4 SST anomalies (refer to Fig. 1. of Saha et al.

2006). This monsoon SPB in coupled models is, therefore,

likely associated with the SPB in the models’ ENSO
prediction.

For the second mode, the temporal skill is similar to the

first mode, but the spatial patterns show a steady decline of
the correlation scale with increasing lead time; when lead

time reaches 3 months, the spatial pattern correlation starts

to fall below 0.5 (Fig. 8b). But, the spatial correlation skill
appears to ‘‘bounce back’’ at an 8-month lead forecast. Due

to data limitation, we are not able to determine to what

extent this rebound lasts and whether this rebound is a
robust feature.

Table 2 shows how the percentage variances accounted

for by the first two major modes vary with the forecast lead
time. For the first mode, the 0-month lead ensemble

hindcast yields a quite realistic percentage variance (34%)

compared to CMAP analysis (30%). However, the frac-
tional variance increases as the forecast lead time

increases. In the 8-month lead forecast, the first mode

accounts for 47.3% of total variance, implying that the
long-lead forecast tends to overstress the first leading mode

while undervaluing the contributions from the higher

modes. This also suggests that ENSO is the dominant
source that can provide long-lead (8-month) A-AM pre-

dictability. For the second mode, the 1-month lead forecast

also yields a realistic estimation of its fractional variance.
Again, as the lead time increases, the fractional variance

tends to increase slightly but is not monotonic.

Figure 10 shows the power spectra of the first two PCs
as a function of lead time. Similar to the fractional

(a)

(b)

Fig. 8 a Dependence of correlation skills on forecast lead time for
the seasonal prediction of the first S-EOF mode in Asian-Australian
monsoon rainfall made by the NCEP CFS model. The red curve
represents the anomaly pattern correlation coefficient between the
observed and predicted eigenvector. The blue curve denotes the
temporal correlation coefficient between the observed and predicted
principal components. b The same as in (a) except for the second
S-EOF mode
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variance, the 0-month lead monthly ensemble hindcast

yields realistic spectra for both PCs. The first PC has a

double peak, with the major one occurring at 2–3 years and
the second one at 5–6 years, while second PC has a peak at

5 years. As the lead time increases, the spectrum for the

first mode loses the biennial peak quickly (Fig. 10, left
panels), suggesting the biennial component of the A-AM is

more difficult to predict than the LF component. This may
be due in part to the coupled models’ deficiencies in

reproducing the biennial component of ENSO and due in

part to the land surface memory that helps creating the
biennial tendency but cannot maintain it for a long forecast

lead. As the lead time increases, the power of the second

mode substantially reduced after 4 months (Fig. 10, right
panel).

6 Conclusion and discussion

6.1 Conclusion

Considering that the A-AM anomalies vary strongly with

the seasons, a S-EOF analysis was adopted to depict the
major modes of interannual variability. The S-EOF ana-

lysis of CMAP precipitation anomalies yielded two

statistically distinguished modes, which account for about
30 and 13%, respectively, of the total variance of the

interannual precipitation variation in the A-AM region.

These two modes have distinct relationships with ENSO.
The first mode concurs with the turnabout of warming to

cooling in the eastern-central Pacific, whereas the second

mode leads NINO 3.4 SST anomalies by about 1 year,

Fig. 9 Spatial patterns of the first S-EOF eigenvector of seasonal precipitation obtained from CMAP, and CFS seasonal forecast as a function of
lead times of 0, 3, 5, and 8 months

Table 2 The percentage variances accounted for by the first two major modes as functions of the forecast lead time in CFS hindcast experiment

CMAP CFS retrospective forecasts as a functions of lead time

0-month 2-month 4-month 6-month 8-month

S-EOF 1 30.1 33.8 41.2 43.7 42.9 47.3

S-EOF 2 13.1 14.3 15.3 19.3 23.3 16.8
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providing a precursor for El Niño/La Niña development

(Fig. 2).
Ten coupled atmosphere–ocean–land climate models

that participated DEMETER and APCC/CliPAS MME

seasonal hindcast for the period of 1981–2001 have been
evaluated against the observed leading modes of the A-AM

precipitation. It was found that the 1-month lead seasonal

hindcast of the MME captures realistic features of the
spatial structure, seasonal evolution, and year-to-year

variations, and the relationship with ENSO in terms of the

first two leading modes of variability. The MME’s second
mode shows a potential to capture the precursors of ENSO

in the A-AM domain about five seasons prior to the mat-

uration of a strong El Niño. Note that this does not imply
that the MME can predict El Nino at a five-season lead. In

summary, the current multi-coupled climate model

ensemble prediction can faithfully predict the structure and
temporal evolution of the two leading modes of variability,

suggesting that the predictability arising from ENSO tele-

connection and local monsoon–ocean interaction are
captured by the models’ MME.

However, the first two modes account for only 43% of
the total variance. Further, the MME considerably under-

estimated the biennial tendency of the leading mode and

the total variances accounted for by the first two modes. It
is also found that during the decaying phase of ENSO, the

models have deficiencies in capturing the austral fall

monsoon precipitation over the maritime continent and the
Walker-type teleconnection. This leads to a drop of pre-

diction skill across the boreal spring.

The CFS hindcast experiments at NCEP provide a most
comprehensive dataset for further analysis of the predict-

ability of the two leading modes, varying with the forecast

lead time. As the lead time increases, the fractional vari-
ance of the first mode increases, suggesting that the long-

lead predictability comes primarily from ENSO predict-

ability. The temporal correlation remains about 0.9 until
the 6-month lead, when it drops significantly. The spatial

pattern of the first mode exhibits a SPB in A-AM predic-

tion, which is associated with the SPB in ENSO.
This study uncovered two surprising findings. First, the

coupled models’ MME 1-month lead seasonal predictions

capture the first two leading modes of variability better than
those captured by the ERA-40 and NCEP-2 reanalysis

datasets (Fig. 5). Second, the results show that the CFS

1-month lead seasonal ensemble hindcast of the first leading
modes is better than the MME in the amplitude of PC, the

power spectra of the PCs, and the fractional variances.

6.2 Discussion

Given that the reanalysis datasets (ERA-40 and NCEP-2)

are model assimilations forced by observed SST with

observed data incorporated, how can the coupled climate
model MME prediction of the first two leading modes be

superior to the reanalysis? We argue that an important

reason is that the MME includes ocean–atmosphere inter-
action processes, whereas the reanalysis data were obtained

by forcing the atmospheric model with prescribed

(observed) SST. In the reanalysis, although more realistic
SST was used, the reanalysis procedure treated the atmo-

sphere as a slave, thus neglecting the atmospheric feedback

to the ocean. Treating the atmosphere as a slave may be
inherently unable to simulate summer monsoon rainfall

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 The power spectrum density (solid line) and red noise
(dashed line) of the first (left-hand panels) and the second (right-hand
panels) S-EOF principal component of seasonal precipitation anom-
alies obtained from CMAP (a, e) lead time forecast and CFS 0-month
(b, f), 3-month (c, g), and 8-month (d, h) lead time forecast
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variations in the heavily precipitating regions (Wang et al.

2004). Study of Kumar et al. (2005) demonstrated the
superior prediction ability of a one-tier system over the

corresponding two-tier system in predicting Indian sub-

continent rainfall. Wu and Kirtman (2004) noted that local
coupled air–sea feedback over the Indian Ocean plays an

important role to simulate proper monsoon-ENSO rela-

tionship in dynamical model. The finding here concurs with
the concept obtained from these previous studies. We

believe that the coupled one-tier approach can enhance the
predictability of the summer monsoon precipitation.

Therefore, it is recommended that future reanalysis should
be carried out with coupled atmosphere and ocean models.

While the MME in general better than any individual

model, the CFS ensemble hindcast outperforms the MME

in terms of the biennial tendency in the first mode and the
amplitude of the anomalies, suggesting that the improved

skill of MME prediction is at the expense of overestimating

the fractional variance of the leading mode. These defi-
ciencies partially limit the MME’s predictive skill. The

MME can only capture a portion of the precipitation

variability.
The first mode has a strong biennial tendency and

essentially reflects the Tropical Biennial Oscillation (TBO)

(Meehl 1993). The result here suggests that the A-AM
leading mode of interannual variability is an essential

manifestation of the TBO and it provides a new perspective

of the seasonally evolving spatio-temporal structure for
TBO. The causes of this mode has been attributed to (1)

remote ENSO forcing, (2) local monsoon–warm pool

ocean interaction, and (3) the regulation of the powerful
monsoon annual cycle (Wang et al. 2003). These processes

are also essential for sustaining the TBO.

Of note is also that the first and second leading modes of
Pacific-Indian Ocean SST are the LF mode and QB com-

ponent, respectively, whereas the first and second A-AM

leading modes are QB and LF modes, respectively. This
suggests that while A-AM anomalies are influenced by

ENSO, the intrinsic mechanisms within the A-AM system

itself (such as monsoon–warm ocean interaction) also play
a very important role in creating biennial tendency and

modifying the response of the monsoon to ENSO.

A number of questions have been left without answers.
The fact that the second S-EOF leads ENSO by 1 year

suggests that monsoon anomalies may play a role in ENSO

onset in the last two decades. However, the causes of the
second important mode need to be explored further. In

addition, which factors contribute to interannual predict-

ability besides ENSO? Is there any additional source of
predictability for A-AM precipitation prediction? The lack

of understanding between the snow cover and monsoon

predictability would be one of error source. These issues
call for further investigation.

The current coupled climate models’ prediction skill in

the A-AM region remains moderate. There is substantial
room for further improvements of the imperfect initial

condition and models’ representation of the real physics.

Predictions over the land monsoon regions are particularly
poor. We speculate that the poor land-surface initial con-

ditions and the models’ deficiencies in representing

atmosphere-land interaction may be two of the major rea-
sons for the MME’s deficiency. There is an urgent need to

determine to what extent improved land processes can
contribute to better predictive skill.
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